ON THE STABILITY OF A GENERAL ADDITIVE FUNCTIONAL INEQUALITY IN BANACH SPACES

SANG-CHO CHUNG*

ABSTRACT. In this paper, we prove the generalized Hyers-Ulam stability of the additive functional inequality

$$||f(2x_1) + f(2x_2) + \dots + f(2x_n)|| \le ||tf(x_1 + x_2 + \dots + x_n)||$$

in Banach spaces where a positive integer $n \geq 3$ and a real number t such that $2 \leq t < n$.

1. Introduction

In 1940, S. M. Ulam [4] suggested the stability problem of functional equations concerning the stability of group homomorphisms.

In the next year, D. H. Hyers [1] gave a first (partial) affirmative answer to the question of Ulam for Banach spaces as follows: If $\delta > 0$ and if $f: \mathcal{X} \to \mathcal{Y}$ is a mapping between Banach spaces \mathcal{X} and \mathcal{Y} satisfying

$$||f(x+y) - f(x) - f(y)|| \le \delta$$

for all $x, y \in \mathcal{X}$, then there is a unique additive mapping $A : \mathcal{X} \to \mathcal{Y}$ such that $||f(x) - A(x)|| \le \delta$ for all $x, y \in \mathcal{X}$.

This type is called the Hyers-Ulam stability.

Throughout this paper, let \mathcal{X} be a normed linear space and \mathcal{Y} a Banach space. Let $f: \mathcal{X} \to \mathcal{Y}$ be a mapping. In 2007, C. Park, Y. S. Cho and M. H. Han [3] proved the generalized Hyers-Ulam stability of the additive functional inequality

$$||f(x) + f(y) + f(z)|| \le ||f(x+y+z)||$$

in Banach spaces. In 2011, J. R. Lee, C. Park and D. Y. Shin [2] studied the generalized Hyers-Ulam stability of the additive functional inequality

$$||f(2x) + f(2y) + 2f(z)|| \le ||2f(x+y+z)||$$

Received September 31, 2013; Accepted October 30, 2013.

²⁰¹⁰ Mathematics Subject Classification: Primary 39B82; Secondary 46B06.

 $[\]ensuremath{\mathsf{Key}}$ words and phrases: additive functional inequality, Hyers-Ulam stability, Banach space.

in Banach spaces.

In this paper, we give some generalized Hyers-Ulam stability of the additive functional inequality

$$||f(2x_1) + f(2x_2) + \dots + f(2x_n)|| \le ||tf(x_1 + x_2 + \dots + x_n)||$$

in Banach spaces where $3 \le n$ and $2 \le t < n (n \in \mathbb{Z} \text{ and } t \in \mathbb{R})$.

2. Hyers-Ulam stability in Banach spaces

To obtain our main result, we need the following lemma.

LEMMA 2.1. Let $f: \mathcal{X} \to \mathcal{Y}$ be a mapping and let $3 \leq n$ and $2 \leq t < n$ where n is an integer and t is a real number. Then f is additive if and only if it satisfies

$$(2.1) ||f(2x_1) + f(2x_2) + \dots + f(2x_n)|| \le ||tf(x_1 + x_2 + \dots + x_n)||$$
 for all $x_1, x_2, \dots, x_n \in \mathcal{X}$.

Proof. If f is additive, then clearly

$$||f(2x_1) + \dots + f(2x_n)|| = ||2f(x_1 + \dots + x_n)|| \le ||tf(x_1 + \dots + x_n)||$$
 for all $x_i \in \mathcal{X}$.

Conversely, assume that f satisfies (2.1). Letting $x_i = 0$ in (2.1), we gain $||nf(0)|| \le ||tf(0)||$ and so f(0) = 0 by the assumpution. Putting $x_i = 0$ for all $i = 3, \dots, n$, and replacing x_1, x_2 by x, -x in (2.1), we get $||f(-x) + f(x)|| \le ||tf(0)|| = 0$ and so f(-x) = -f(x) for all $x \in \mathcal{X}$. Setting $x_1 = \frac{x+y}{2}, x_2 = \frac{-x}{2}, x_3 = \frac{-y}{2}, x_i = 0 (4 \le i \le n)$ in (2.1), we have

$$||f(x+y) + f(-x) + f(-y)|| \le ||tf(0)|| = 0$$

for all $x, y \in \mathcal{X}$. Thus we obtain f(x + y) = f(x) + f(y) for all $x, y \in \mathcal{X}$.

THEOREM 2.2. Let $f: \mathcal{X} \to \mathcal{Y}$ be a mapping with f(0) = 0 and let $3 \leq n$ and $2 \leq t < n$. If there is a function $\varphi: \mathcal{X}^n \to [0, \infty)$ satisfying

(2.2)
$$||f(2x_1) + \dots + f(2x_n)|| \le ||tf(x_1 + \dots + x_n)|| + \varphi(x_1, \dots, x_n)|$$

and

(2.3)

$$\widetilde{\varphi}(x_1, \dots, x_n) := \sum_{j=0}^{\infty} \frac{1}{2^j} \varphi((-2)^j x_1, (-2)^j x_2, (-2)^j x_3, x_4, \dots, x_n) < \infty$$

for all $x_1, \dots, x_n \in \mathcal{X}$, then there exists a unique additive mapping $A: \mathcal{X} \to \mathcal{Y}$ such that

(2.4)
$$||f(x) - A(x)|| \le \frac{1}{2}\widetilde{\varphi}\left(x, -\frac{x}{2}, -\frac{x}{2}, 0, \dots, 0\right)$$

for all $x \in \mathcal{X}$.

Proof. Replacing $x_1, x_2, x_3, x_i (4 \le i)$ by $(-2)^{n+1} \frac{x}{2}, (-2)^n \frac{x}{2}, (-2)^n \frac{x}{2}, 0$, respectively, and dividing by 2^{n+1} in (2.2), since f(0) = 0, we get

$$\left\| \frac{f\left((-2)^{n+1}x\right)}{(-2)^{n+1}} - \frac{f\left((-2)^nx\right)}{(-2)^n} \right\|$$

$$\leq \frac{1}{2^{n+1}} \varphi\left((-2)^{n+1}\frac{x}{2}, (-2)^n\frac{x}{2}, (-2)^n\frac{x}{2}, 0, \dots, 0\right)$$

for all $x \in \mathcal{X}$ and all nonnegative integers n. From the above inequality, we have

$$(2.5) \qquad \left\| \frac{f((-2)^{n}x)}{(-2)^{n}} - \frac{f((-2)^{m}x)}{(-2)^{m}} \right\|$$

$$\leq \sum_{j=m}^{n-1} \left\| \frac{f((-2)^{j+1}x)}{(-2)^{j+1}} - \frac{f((-2)^{j}x)}{(-2)^{j}} \right\|$$

$$\leq \sum_{j=m}^{n-1} \frac{1}{2^{j+1}} \varphi((-2)^{j}x, (-2)^{j-1}x, (-2)^{j-1}x, 0, \dots, 0)$$

for all $x \in \mathcal{X}$ and all nonnegative integers m, n with m < n. By the condition (2.3), the sequence $\left\{\frac{f((-2)^n x)}{(-2)^n}\right\}$ is a Cauchy sequence for all $x \in \mathcal{X}$. Since \mathcal{Y} is complete, the sequence $\left\{\frac{f((-2)^n x)}{(-2)^n}\right\}$ converges for all $x \in \mathcal{X}$. So we can define a mapping $A: \mathcal{X} \to \mathcal{Y}$ by

$$A(x) := \lim_{n \to \infty} \frac{f((-2)^n x)}{(-2)^n}$$

for all $x \in \mathcal{X}$.

In order to prove that A satisfies (2.4), taking m = 0 and letting n tend to ∞ in (2.5), then we have the following inequality (2.4).

$$||A(x) - f(x)|| \le \sum_{j=0}^{\infty} \frac{1}{2^{j+1}} \varphi((-2)^j x, (-2)^{j-1} x, (-2)^{j-1} x, 0, \dots, 0)$$
$$= \frac{1}{2} \widetilde{\varphi} \left(x, -\frac{x}{2}, -\frac{x}{2}, 0, \dots, 0 \right).$$

Next we show that A is additive. Replacing x_i by $(-2)^n x_i$ for all $i = 1, 2, \dots, n$, and dividing by 2^n in (2.2), we obtain

$$\left\| \frac{f((-2)^n 2x_1)}{(-2)^n} + \frac{f((-2)^n 2x_2)}{(-2)^n} + \dots + \frac{f((-2)^n 2x_n)}{(-2)^n} \right\|$$

$$\leq \left\| t \frac{f((-2)^n (x_1 + x_2 + \dots + x_n))}{(-2)^n} \right\|$$

$$+ \frac{1}{2^n} \varphi((-2)^n x_1, (-2)^n x_2, \dots, (-2)^n x_n)$$

for all $x_1, x_2, \dots, x_n \in \mathcal{X}$ and all nonnegative integers n. Since (2.3) gives that

$$\lim_{n \to \infty} \frac{1}{2^n} \varphi((-2)^n x_1, (-2)^n x_2, \cdots, (-2)^n x_n) = 0$$

for all $x_1, x_2, \dots, x_n \in \mathcal{X}$, letting n tend to ∞ in the above inequality, we have

$$||A(2x_1) + A(2x_2) + \dots + A(2x_n)|| \le ||tA(x_1 + x_2 + \dots + x_n)||$$

so A is additive by Lemma 2.1.

Let $A': \mathcal{X} \to \mathcal{Y}$ be another additive mapping satisfying (2.4). Since both A and A' are additive, we have, for all positive integer n

$$||A(x) - A'(x)||$$

$$= \frac{1}{2^n} ||A((-2)^n x) - A'((-2)^n x)||$$

$$\leq \frac{1}{2^n} (||A((-2)^n x) - f((-2)^n x)|| + ||f((-2)^n x) - A'((-2)^n x)||)$$

$$\leq \frac{1}{2^n} \widetilde{\varphi} ((-2)^n x, (-2)^{n-1} x, (-2)^{n-1} x, 0, \dots, 0)$$

$$= \sum_{j=n}^{\infty} \frac{1}{2^j} \varphi ((-2)^{j-n} x, (-2)^{j-1-n} x, (-2)^{j-1-n} x, 0, \dots, 0)$$

which goes to zero as $n \to \infty$ for all $x \in \mathcal{X}$ by (2.3). Therefore, A is a unique additive mapping satisfying (2.4), as desired.

THEOREM 2.3. Let $f: \mathcal{X} \to \mathcal{Y}$ be a mapping and let $3 \leq n$ and $2 \leq t < n$. If there is a function $\varphi: \mathcal{X}^n \to [0, \infty)$ satisfying

$$(2.6) ||f(2x_1) + \dots + f(2x_n)|| \le ||tf(x_1 + \dots + x_n)|| + \varphi(x_1, \dots, x_n).$$

where

(2.7)
$$(2.7) \qquad := \sum_{j=1}^{\infty} 2^{j} \varphi \left(\frac{x_{1}}{(-2)^{j}}, \frac{x_{2}}{(-2)^{j}}, \frac{x_{3}}{(-2)^{j}}, x_{4}, \cdots, x_{n} \right) < \infty$$

for all $x_1, x_2, \dots, x_n \in \mathcal{X}$, then there exists a unique additive mapping $A: \mathcal{X} \to \mathcal{Y}$ such that

(2.8)
$$||f(x) - A(x)|| \le \frac{1}{2}\widetilde{\varphi}\left(x, -\frac{x}{2}, -\frac{x}{2}, 0, \dots, 0\right)$$

for all $x \in \mathcal{X}$.

Proof. We have $\varphi(0, \dots, 0) = 0$ by (2.7), and so f(0) = 0 by (2.6). Replacing $x_1, x_2, x_3, x_i (4 \le i)$ by $\frac{x}{(-2)^n}, \frac{x}{(-2)^{n+1}}, \frac{x}{(-2)^{n+1}}, 0$, respectively, and multiplying by 2^{n-1} in (2.6), since f(0) = 0, we get

$$\left\| (-2)^{n-1} f\left(\frac{x}{(-2)^{n-1}}\right) - (-2)^n f\left(\frac{x}{(-2)^n}\right) \right\|$$

$$\leq 2^{n-1} \varphi\left(\frac{x}{(-2)^n}, \frac{x}{(-2)^{n+1}}, \frac{x}{(-2)^{n+1}}, 0, \dots, 0\right)$$

for all $x \in \mathcal{X}$ and all nonnegative integers n. From the above inequality, we have

(2.9)
$$\left\| (-2)^n f\left(\frac{x}{(-2)^n}\right) - (-2)^m f\left(\frac{x}{(-2)^m}\right) \right\|$$

$$\leq \sum_{j=m+1}^n \left\| (-2)^j f\left(\frac{x}{(-2)^j}\right) - (-2)^{j-1} f\left(\frac{x}{(-2)^{j-1}}\right) \right\|$$

$$\leq \sum_{j=m+1}^n 2^{j-1} \varphi\left(\frac{x}{(-2)^j}, \frac{x}{(-2)^{j+1}}, \frac{x}{(-2)^{j+1}}, 0, \dots, 0\right)$$

for all $x \in \mathcal{X}$ and all nonnegative integers m, n with m < n. By the condition (2.7), the sequence $\left\{ (-2)^n f\left(\frac{x}{(-2)^n}\right) \right\}$ is a Cauchy sequence for all $x \in \mathcal{X}$. Since \mathcal{X} is complete, the sequence

for all $x \in \mathcal{X}$. Since \mathcal{Y} is complete, the sequence $\left\{ (-2)^n f\left(\frac{x}{(-2)^n}\right) \right\}$ converges for all $x \in \mathcal{X}$. So we can define a mapping $A: \mathcal{X} \to \mathcal{Y}$ by

$$A(x) := \lim_{n \to \infty} \left\{ (-2)^n f\left(\frac{x}{(-2)^n}\right) \right\}$$

for all $x \in \mathcal{X}$.

In order to prove that A satisfies (2.8), taking m = 0 and letting n tend to ∞ in (2.9), then we have the following inequality (2.8).

$$||A(x) - f(x)|| \le \sum_{j=0}^{\infty} 2^{j-1} \varphi\left(\frac{x}{(-2)^j}, \frac{x}{(-2)^{j+1}}, \frac{x}{(-2)^{j+1}}, 0, \dots, 0\right)$$
$$= \frac{1}{2} \widetilde{\varphi}\left(x, -\frac{x}{2}, -\frac{x}{2}, 0, \dots, 0\right).$$

Next we show that A is additive. Replacing x_i by $\frac{x_i}{(-2)^n}$ for all $i = 1, 2, \dots, n$, and multiplying by 2^n in (2.6), we obtain

$$\left\| (-2)^n f\left(\frac{2x_1}{(-2)^n}\right) + (-2)^n f\left(\frac{2x_2}{(-2)^n}\right) + \dots + (-2)^n f\left(\frac{2x_n}{(-2)^n}\right) \right\|$$

$$\leq \left\| t(-2)^n f\left(\frac{(x_1 + x_2 + \dots + x_n)}{(-2)^n}\right) \right\|$$

$$+ 2^n \varphi\left(\frac{x_1}{(-2)^n}, \frac{x_2}{(-2)^n}, \dots, \frac{x_n}{(-2)^n}\right)$$

for all $x_1, x_2, \dots, x_n \in \mathcal{X}$ and all nonnegative integers n. Since (2.7) gives that

$$\lim_{n \to \infty} 2^n \varphi \left(\frac{x_1}{(-2)^n}, \frac{x_2}{(-2)^n}, \cdots, \frac{x_n}{(-2)^n} \right) = 0$$

for all $x_1, x_2, \dots, x_n \in \mathcal{X}$, letting n tend to ∞ in the above inequality, we have

$$||A(2x_1) + A(2x_2) + \dots + A(2x_n)|| \le ||tA(x_1 + x_2 + \dots + x_n)||$$

so A is additive by Lemma 2.1.

Let $A': \mathcal{X} \to \mathcal{Y}$ be another additive mapping satisfying (2.8). Since both A and A' are additive, we have, for all positive integer n

$$\begin{aligned} & \|A(x) - A'(x)\| \\ &= 2^n \left\| A\left(\frac{x}{(-2)^n}\right) - A'\left(\frac{x}{(-2)^n}\right) \right\| \\ &\leq 2^n \left(\left\| A\left(\frac{x}{(-2)^n}\right) - f\left(\frac{x}{(-2)^n}\right) \right\| + \left\| f\left(\frac{x}{(-2)^n}\right) - A'\left(\frac{x}{(-2)^n}\right) \right\| \right) \\ &\leq 2^n \widetilde{\varphi} \left(\frac{x_1}{(-2)^n}, \frac{-x_2}{(-2)^{n+1}}, \frac{-x_3}{(-2)^{n+1}}, 0, \dots, 0 \right) \end{aligned}$$

$$= \sum_{j=n+1}^{\infty} 2^{j} \varphi \left(\frac{x_1}{(-2)^{j-n}}, \frac{-x_2}{(-2)^{j+1-n}}, \frac{-x_3}{(-2)^{j+1-n}}, 0, \dots, 0 \right)$$

which goes to zero as $n \to \infty$ for all $x \in \mathcal{X}$ by (2.7). Therefore, A is a unique additive mapping satisfying (2.8), as desired.

References

- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224.
- [2] J. R. Lee, C. Park, and D. Y. Shin, Stability of an additive functional inequality in proper CQ*-algebras, Bull. Korean Math. Soc. 48 (2011), 853-871.
- [3] C. Park, Y. S. Cho, and M. H. Han, Functional inequalities associated with Jordan -von Neumann-type additive functional equations, J. Inequal. Appl. 2007 (2007), Article ID 41820, 13 pages.
- [4] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.

*

Department of Mathematics Education Mokwon University Daejeon 302-729, Republic of Korea *E-mail*: math888@naver.com